Sentence-level and Environmental Cues to Lexical Representation of Abstract Predicates

Misha Becker
University of North Carolina at Chapel Hill
mbecker@email.unc.edu

September 17, 2016
SynLinks Workshop
University of Connecticut
Sentence-level and Environmental Cues to Lexical Representation of Abstract Predicates

How do children learn word meanings?
Sentence-level and Environmental Cues to Lexical Representation of Abstract Predicates

How do children learn word meanings?

What if the word doesn’t denote a concrete object?
How do children learn word meanings?

What if the word doesn’t denote a concrete object?

What if it denotes an action? or a property? or a (non-observable) state?
Sentence-level and Environmental Cues to Lexical Representation of Abstract Predicates

How do children learn word meanings?

What if the word doesn’t denote a concrete object?

What if it denotes an action? or a property? or a (non-observable) state?

What if it denotes a property of a situation? or an internal property?
Sentence-level and Environmental Cues to Lexical Representation of Abstract Predicates

How do children learn word meanings?

What if the word doesn’t denote a concrete object?

What if it denotes an action? or a property? or a (non-observable) state?

What if it denotes a property of a situation? or an internal property?

Children rely on many different kinds of cues to figure out word meanings, some from language and some from the world.
Sentence-level and Environmental Cues to Lexical Representation of Abstract Predicates

How do children learn word meanings?

What if the word doesn’t denote a concrete object?

What if it denotes an action? or a property? or a (non-observable) state?

What if it denotes a property of a situation? or an internal property?

Children rely on many different kinds of cues to figure out word meanings, some from language and some from the world.

What are those cues and how do they interact?
Outline

What are sentence-level cues and what are environmental cues?
Outline

- What are sentence-level cues and what are environmental cues?
- What are abstract predicates and why is their syntax interesting?
Outline

- What are sentence-level cues and what are environmental cues?
- What are abstract predicates and why is their syntax interesting?
 - Raising
 - Tough-Movement
 - Control
Outline

- What are sentence-level cues and what are environmental cues?
- What are abstract predicates and why is their syntax interesting?
 - Raising
 - Tough-Movement
 - Control
- An experimental approach to studying judgments of grammaticality
Outline

- What are sentence-level cues and what are environmental cues?
- What are abstract predicates and why is their syntax interesting?
 - Raising
 - Tough-Movement
 - Control
- An experimental approach to studying judgments of grammaticality
- Another type of abstract predicate: emotion adjectives
Sentence-level and Environmental Cues

What are “Sentence-level cues” to word meanings?
Sentence-level and Environmental Cues

What are “Sentence-level cues” to word meanings?

- Argument-structure frames
 - [Subject [Verb]]
 - [Subject [Verb [Object]]]
 - [Subject [[Verb [Object]] Indirect Object]]
 - [Subject [Verb [Sentence]]]

sleep, *hit, *give, ?think
*sleep, hit, *give, *think
*sleep, *hit, give, *think
*sleep, *hit, *give, think
What are “Sentence-level cues” to word meanings?

- **Argument-structure frames**
 - [Subject [Verb]]
 - [Subject [Verb [Object]]]
 - [Subject [[Verb [Object]] Indirect Object]]
 - [Subject [Verb [Sentence]]]

- **NP animacy**
 - The girl gorped to roll down the hill
 - The ball gorped to roll down the hill

sleep, *hit, *give, ?think
*sleep, hit, *give, *think
*sleep, *hit, give, *think
*sleep, *hit, *give, think
Sentence-level and Environmental Cues

What are “Sentence-level cues” to word meanings?

- Argument-structure frames
 - [Subject [Verb]]
 - [Subject [Verb [Object]]]
 - [Subject [[Verb [Object]] Indirect Object]]
 - [Subject [Verb [Sentence]]]

- NP animacy
 - The girl gorped to roll down the hill
 - The ball gorped to roll down the hill

- Any other cues that come from grammatical restrictions: definite vs. indefinite determiners, morphosyntactic markers or patterns, etc.
Sentence-level and Environmental Cues

What are “Environmental cues” to word meanings?
Sentence-level and Environmental Cues

What are “Environmental cues” to word meanings?

- What is “going on” in a situation—extralinguistic
Sentence-level and Environmental Cues

What are “Environmental cues” to word meanings?

- What is “going on” in a situation—extralinguistic
- Number of participants and their degree of animacy
Sentence-level and Environmental Cues

What are “Environmental cues” to word meanings?

- What is “going on” in a situation—extralinguistic
- Number of participants and their degree of animacy
- Motivations or incentives for actors to act
Sentence-level and Environmental Cues

What are “Environmental cues” to word meanings?

- What is “going on” in a situation—extralinguistic
- Number of participants and their degree of animacy
- Motivations or incentives for actors to act
- Results or repercussions of actions
Sentence-level and Environmental Cues

What are “Environmental cues” to word meanings?

- What is “going on” in a situation—extralinguistic
- Number of participants and their degree of animacy
- Motivations or incentives for actors to act
- Results or repercussions of actions
- Observable actions, events and states
What are “Environmental cues” to word meanings?

- What is “going on” in a situation—extralinguistic
- Number of participants and their degree of animacy
- Motivations or incentives for actors to act
- Results or repercussions of actions
- Observable actions, events and states
- Any other observable or inferable properties of the scene that restrict or relate to how the story plays out
The Usefulness of Sentence-level Cues

Previous work: as predicate meanings become more abstract, sentence-level cues become more reliable and critical for learning those meanings.

The Usefulness of Sentence-level Cues

Frames that are Helpful for Abstract Predicates

- tensed complement (*that*-clause)
 - mental verbs (*think*, *know*, *believe*)
 - verbs of communication (*say*)
Frames that are Helpful for Abstract Predicates

- tensed complement (that-clause)
 - mental verbs (think, know, believe)
 - verbs of communication (say)

- infinitive complement (to-clause)
 - raising verbs (seem, tend)
 - control verbs (want, claim)
 - tough-adjectives (easy, tough)
 - control adjectives (eager, afraid)
Predicates that take an infinitive complement are all fairly abstract (seem, want), but they differ from each other in important ways (seem vs. want)
Predicates that take an infinitive complement are all fairly abstract (*seem*, *want*), but they differ from each other in important ways (*seem* vs. *want*)

→ different representations.
Predicates that take an infinitive complement are all fairly abstract (seem, want), but they differ from each other in important ways (seem vs. want)

→ different representations.

How do children come to distinguish them?
Types of Abstract Predicates

Raising V Control V Tough-Adj Control Adj

seem want easy eager
Types of Abstract Predicates

<table>
<thead>
<tr>
<th>Raising V</th>
<th>Control V</th>
<th>Tough-Adj</th>
<th>Control Adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>seem</td>
<td>want</td>
<td>easy</td>
<td>eager</td>
</tr>
</tbody>
</table>

(1) John _Th seems _ti to be friendly.] raising verb
(2) John _Ag/Exp wants _PROi to be friendly.] control verb
Types of Abstract Predicates

Raising V Control V Tough-Adj Control Adj

seem want easy eager

(1) John_i. Th seems [t_i to be friendly.] raising verb
(2) John_i.Ag/Exp wants [PRO_i to be friendly.] control verb
(3) John_i. Th is easy [PRO_{arb} to please t_i] tough adjective
(4) John_i. Exp is eager [PRO_i to please e] control adjective
Fortunately, a finer-grained Syntactic Bootstrapping approach reveals frame differences among these predicate types.
Fortunately, a finer-grained Syntactic Bootstrapping approach reveals frame differences among these predicate types.

(5) It seems/*wants to be cloudy.
 There seems/*wants to be a problem.
 The book seems/*wants to be heavy.

(6) It is easy/*eager to please John.
 The rock is easy/*eager to push.
Fortunately, a finer-grained Syntactic Bootstrapping approach reveals frame differences among these predicate types.

(5) It **seems/**wants to be cloudy.
 There **seems/**wants to be a problem.
 The book **seems/**wants to be heavy.

(6) It is **easy/**eager to please John.
 The rock is **easy/**eager to push.

(7) John **wanted/**seemed the prize.

(8) John is **eager/**easy.
Are Speakers Sensitive to these Restrictions?

My older work showed that adults and children generally assume
the following (Becker 2005, 2006, 2009, Becker & Estigarribia 2013):

- It/There < \verbs > to S → raising verb NP
- NP inanimate < \verbs > to S → raising verb
- NP animate < \verbs > to S → control verb

More recent work extended this to adjectives (Becker 2015).
My older work showed that adults and children generally assume the following (Becker 2005, 2006, 2009, Becker & Estigarribia 2013):

- \(\text{It/There} < \text{verbs} > \) to \(S \) \(\rightarrow \) raising verb
- \(\text{NP}_{\text{inanimate}} < \text{verbs} > \) to \(S \) \(\rightarrow \) raising verb
- \(\text{NP}_{\text{animate}} < \text{verbs} > \) to \(S \) \(\rightarrow \) control verb
My older work showed that adults and children generally assume the following (Becker 2005, 2006, 2009, Becker & Estigarribia 2013):

- It/There $<$verbs$>$ to S \rightarrow raising verb
- $\text{NP}_{inanimate}$ $<$verbs$>$ to S \rightarrow raising verb
- $\text{NP}_{animate}$ $<$verbs$>$ to S \rightarrow control verb

More recent work extended this to adjectives (Becker 2015).
Teach children novel adjectives by using them 5 times in a story or dialogue
Teach children novel adjectives by using them 5 times in a story or dialogue.

Manipulate sentence-level cues in dialogue (here: subject animacy).
Teach children novel adjectives by using them 5 times in a story or dialogue.

Manipulate sentence-level cues in dialogue (here: subject animacy).

In addition to providing a sentence-level cue (animacy), the stories provided some environmental context so the stories were coherent.
If participants are able to develop a lexical representation of the novel word that includes its Theta grid → should have intuitions about other possible/impossible sentence frames.
If participants are able to develop a lexical representation of the novel word that includes its Theta grid → should have intuitions about other possible/impossible sentence frames.

Ask children a yes/no question using the novel adjective in one of those possible/impossible frames.
If participants are able to develop a lexical representation of the novel word that includes its Theta grid → should have intuitions about other possible/impossible sentence frames.

Ask children a yes/no question using the novel adjective in one of those possible/impossible frames

Should be slower to answer the “impossible” questions
Inanimate, “easy” context

Nurse asks Mrs. Farmer to help her learn to draw. Nurse draws a flower but messes up, suggests drawing a tree. Mrs. Farmer encourages her to draw an apple instead, since “apples are very daxy to draw”
Stimuli: Inanimate Condition

Inanimate, “easy” context

Nurse asks Mrs. Farmer to help her learn to draw. Nurse draws a flower but messes up, suggests drawing a tree. Mrs. Farmer encourages her to draw an apple instead, since “apples are very daxy to draw”

Animate, “eager” context

Policeman asks for help moving furniture. Nurse refuses to help, but suggests that Mr. Farmer do it since he is “always greppy to help”
Stimuli: Animate Condition

Animate, “easy” context

Nurse asks Mrs. Farmer to pose so she can draw her portrait. Mrs. Farmer refuses but Mr. Farmer agrees. Nurse successfully draws Mr. Farmer’s portrait, since he was “daxy to draw”.

Animate, “eager” context

Policeman asks for help moving furniture. Nurse refuses to help, but suggests that Mr. Farmer do it since he is “always greppy to help”.
Stimuli: Animate Condition

Animate, “easy” context

Nurse asks Mrs. Farmer to pose so she can draw her portrait. Mrs. Farmer refuses but Mr. Farmer agrees. Nurse successfully draws Mr. Farmer’s portrait, since he was “daxy to draw”.

Animate, “eager” context

Policeman asks for help moving furniture. Nurse refuses to help, but suggests that Mr. Farmer do it since he is “always greppy to help”
Prediction:
inanimate subject (An apple is daxy to draw) →
Prediction:
inanimate subject (An apple is daxy to draw) → tough-adj.
Prediction:
inanimate subject (An apple is daxy to draw) → *tough-adj.*

√ Is it daxy to draw an apple? → faster RT

* Is the tree daxy? → slower RT
Novel Abstract Predicates

Prediction:
inanimate subject (An apple is daxy to draw) \rightarrow tough-adj.
 $\sqrt{}$ Is it daxy to draw an apple? \rightarrow faster RT
 * Is the tree daxy? \rightarrow slower RT

animate subject (Mr. Farmer is greppy to help) \rightarrow
Novel Abstract Predicates

Prediction:
inanimate subject (An apple is daxy to draw) → tough-adj.
 √ Is it daxy to draw an apple? → faster RT
 * Is the tree daxy? → slower RT

animate subject (Mr. Farmer is greppy to help) → control or ?
Prediction:
inanimate subject (An apple is daxy to draw) \rightarrow tough-adj.
\checkmark Is it daxy to draw an apple? \rightarrow faster RT
* Is the tree daxy? \rightarrow slower RT

animate subject (Mr. Farmer is greppy to help) \rightarrow control or ?
*/? Is it greppy to help the nurse? \rightarrow slower/= RT
\checkmark/? Is Mr. Farmer greppy? \rightarrow faster/= RT
Children ages 4–7 years (N = 40; Becker 2015)
As expected, in the **inanimate** condition children generally responded:

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Question 1</th>
<th>Question 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>faster</td>
<td>Is it daxy to draw a flower?</td>
<td>tough</td>
</tr>
<tr>
<td>slower</td>
<td>Is the tree daxy?</td>
<td></td>
</tr>
<tr>
<td>same</td>
<td>Is Mr. Farmer greppy?</td>
<td></td>
</tr>
<tr>
<td>same</td>
<td>Is it greppy to help the nurse?</td>
<td>?</td>
</tr>
</tbody>
</table>
As expected, in the **inanimate** condition children generally responded:

<table>
<thead>
<tr>
<th>Speed</th>
<th>Question 1</th>
<th>Question 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>faster</td>
<td>Is it daxy to draw a flower?</td>
<td>Is the tree daxy?</td>
</tr>
<tr>
<td>slower</td>
<td>Is it the tree daxy?</td>
<td></td>
</tr>
</tbody>
</table>

Tough

<table>
<thead>
<tr>
<th>Speed</th>
<th>Question 1</th>
<th>Question 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>same</td>
<td>Is Mr. Farmer greppy?</td>
<td>Is it greppy to help the nurse?</td>
</tr>
<tr>
<td>same</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

?

However, when all subjects were **animate** they responded:

<table>
<thead>
<tr>
<th>Speed</th>
<th>Question 1</th>
<th>Question 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>slightly faster</td>
<td>Is it daxy to draw Mr. Farmer?</td>
<td>Is Mr. Farmer daxy?</td>
</tr>
<tr>
<td>slightly slower</td>
<td>Is Mr. Farmer daxy?</td>
<td></td>
</tr>
</tbody>
</table>

Tough?

<table>
<thead>
<tr>
<th>Speed</th>
<th>Question 1</th>
<th>Question 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>faster</td>
<td>Is Mr. Farmer greppy?</td>
<td>Is it greppy to help the nurse?</td>
</tr>
<tr>
<td>slower</td>
<td>Is it greppy to help the nurse?</td>
<td></td>
</tr>
</tbody>
</table>

Control
Is relative Reaction Time a good measure of grammatical acceptability?
A Side Note about Methodology

Is relative Reaction Time a good measure of grammatical acceptability?

Is relative Reaction Time a good measure of grammatical acceptability?

Is relative Reaction Time a good measure of grammatical acceptability?

- Language processing in adult speakers (Rubenstein, et al. 1970, Meyers & Schvaneveldt 1971, Luce 1986, among many others) “double-take” in response to ungrammaticality, garden-path → longer time to respond/process
Is relative Reaction Time a good measure of grammatical acceptability?

- Language processing in adult speakers (Rubenstein, et al. 1970, Meyers & Schvaneveldt 1971, Luce 1986, among many others) “double-take” in response to ungrammaticality, garden-path → longer time to respond/process
- Children show surprise in response to unexpected input
Is relative Reaction Time a good measure of grammatical acceptability?

- Language processing in adult speakers (Rubenstein, et al. 1970, Meyers & Schvaneveldt 1971, Luce 1986, among many others) “double-take” in response to ungrammaticality, garden-path → longer time to respond/process
- Children show surprise in response to unexpected input
- Ungrammatical input is unexpected → slow response
Is relative Reaction Time a good measure of grammatical acceptability?

- Language processing in adult speakers (Rubenstein, et al. 1970, Meyers & Schvaneveldt 1971, Luce 1986, among many others) “double-take” in response to ungrammaticality, garden-path → longer time to respond/process
- Children show surprise in response to unexpected input
- Ungrammatical input is unexpected → slow response

⇒ Children should show surprise → longer RT ← when the question sounds ungrammatical
RT as a Measure of Grammaticality

Does this actually work?
Does this actually work?

- Did the farmer play with the car? √
Does this actually work?

- Did the farmer play with the car? √
- Did the farmer play the car to his friend? *
RT as a Measure of Grammaticality

Does this actually work?

- Did the farmer play with the car? √
- Did the farmer play the car to his friend? *
- Did the nurse borrow a basket? √
Does this actually work?

- Did the farmer play with the car? √
- Did the farmer play the car to his friend? *
- Did the nurse borrow a basket? √
- Did the nurse borrow? *
RT as a Measure of Grammaticality

Children (N=40; age range=4–7 years, mean=6;0)
RT as a Measure of Grammaticality

- Is the girl petting the cat? √
- Is the boy petting? *
- Is the nurse sleeping? √
- Is the policeman sleeping the nurse? *
Children (N=37; age range=3–4 years, mean=3;8)
RT as a Measure of Grammaticality

Adults (N=13; age range=21–52, mean=30.3)
Children ages 4–7 years (N = 40; Becker 2015)
As expected, in the **inanimate** condition children generally responded:

<table>
<thead>
<tr>
<th>faster</th>
<th>Is it daxy to draw a flower?</th>
<th>tough</th>
</tr>
</thead>
<tbody>
<tr>
<td>slower</td>
<td>Is the tree daxy?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>same</th>
<th>Is Mr. Farmer greppy?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>same</td>
<td>Is it greppy to help the nurse?</td>
<td>?</td>
</tr>
</tbody>
</table>

However, when all subjects were **animate** they responded:

<table>
<thead>
<tr>
<th>slightly faster</th>
<th>Is it daxy to draw Mr. Farmer?</th>
<th>tough?</th>
</tr>
</thead>
<tbody>
<tr>
<td>slightly slower</td>
<td>Is Mr. Farmer daxy?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>faster</th>
<th>Is Mr. Farmer greppy?</th>
<th>control</th>
</tr>
</thead>
<tbody>
<tr>
<td>slower</td>
<td>Is it greppy to help the nurse?</td>
<td></td>
</tr>
</tbody>
</table>

⇒ On what basis were they determining adjective category?
Environmental Cues

There were no sentence-level cues to categorize the adjectives.
Environmental Cues

There were no sentence-level cues to categorize the adjectives.

Mr. Farmer is daxy to draw
Mr. Farmer is greppy to help \{ both are compatible with either tough or control adjective \}

Mr. Farmer gets drawn
Mr. Farmer helps out his friend

⇒ Theme
⇒ Agent

Nurse gets hidden under blanket
Teacher is excited about teaching

⇒ Theme
⇒ Agent/Experiencer

(cf. Papafragou, Cassidy & Gleitman 2007)
Environmental Cues

There were no sentence-level cues to categorize the adjectives.

Mr. Farmer is daxy to draw \(\forall \) both are compatible with either tough or control adjective
Mr. Farmer is greppy to help

What else was going on in the scenario?
Environmental Cues

There were no sentence-level cues to categorize the adjectives.

Mr. Farmer is daxy to draw
Mr. Farmer is greppy to help

Both are compatible with either tough or control adjective

What else was going on in the scenario?

Daxy story
Mr. Farmer gets drawn ⇒ Theme

Greppy story
Mr. Farmer helps out his friend ⇒ Agent
Environmental Cues

There were no sentence-level cues to categorize the adjectives.

Mr. Farmer is daxy to draw
Mr. Farmer is greppy to help

Both are compatible with either tough or control adjective

What else was going on in the scenario?

<table>
<thead>
<tr>
<th>Daxy story</th>
<th>Greppy story</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Farmer gets drawn</td>
<td>Mr. Farmer helps out his friend</td>
</tr>
<tr>
<td>⇒ Theme</td>
<td>⇒ Agent</td>
</tr>
<tr>
<td>Nurse gets hidden under blanket</td>
<td>teacher is excited about teaching</td>
</tr>
<tr>
<td>⇒ Theme</td>
<td>⇒ Agent/Experiencer</td>
</tr>
</tbody>
</table>
There were no sentence-level cues to categorize the adjectives.

Mr. Farmer is daxy to draw
Mr. Farmer is greppy to help
\[
\begin{align*}
\text{both are compatible with either} & \quad \text{tough or control adjective}
\end{align*}
\]

What else was going on in the scenario?

<table>
<thead>
<tr>
<th>Daxy story</th>
<th>Greppy story</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Farmer gets drawn</td>
<td>Mr. Farmer helps out his friend</td>
</tr>
<tr>
<td>⇒ Theme</td>
<td>⇒ Agent</td>
</tr>
<tr>
<td>Nurse gets hidden under blanket</td>
<td>teacher is excited about teaching</td>
</tr>
<tr>
<td>⇒ Theme</td>
<td>⇒ Agent/Experiencer</td>
</tr>
</tbody>
</table>

(cf. Papafragou, Cassidy & Gleitman 2007)
Environmental Cues

More generally: how do children learn the individual lexical meanings of different *tough*-adjectives, different control adjectives, raising verbs, etc.?
More generally: how do children learn the individual lexical meanings of different *tough*-adjectives, different control adjectives, raising verbs, etc.?

- easy vs. hard
- eager vs. afraid
- seem vs. tend vs. happen
- want vs. try vs. claim
More generally: how do children learn the individual lexical meanings of different *tough*-adjectives, different control adjectives, raising verbs, etc.?

- easy vs. hard
- eager vs. afraid
- seem vs. tend vs. happen
- want vs. try vs. claim

Sentence-level cues serve to categorize → restrict range of possible meanings
Environmental Cues

More generally: how do children learn the individual lexical meanings of different *tough*-adjectives, different control adjectives, raising verbs, etc.?

- easy vs. hard
- eager vs. afraid
- seem vs. tend vs. happen
- want vs. try vs. claim

Sentence-level cues serve to categorize → restrict range of possible meanings but this is only the first step.
Environmental Cues

Refinement of lexical representation must come from other information.

Observable:
- relative agency of participants
- events themselves
- causes and outcomes of actions
Refinement of lexical representation must come from other information.

Observable:
- relative agency of participants
- events themselves
- causes and outcomes of actions

Non-observable:
- desires and intentions (want/try to)
- perceptions (seem to X)
- internal perception of difficulty (easy/hard for X)
- other internal states (afraid to)
Environmental Cues

Refinement of lexical representation must come from other information.

Observable:
- relative agency of participants
- events themselves
- causes and outcomes of actions

Non-observable:
- desires and intentions (want/try to)
- perceptions (seem to X)
- internal perception of difficulty (easy/hard for X)
- other internal states (afraid to)

Can children infer these internal states?
Emotion adjectives denote internal states. How do children learn their meanings?
Emotion Adjectives

Emotion adjectives denote internal states. How do children learn their meanings?

- Which sentence-level cues help to restrict the set of likely/possible meanings?
Emotion adjectives denote internal states. How do children learn their meanings?

- Which sentence-level cues help to restrict the set of likely/possible meanings?
- Which environmental cues (facial expressions, situations) help to refine the lexical meaning?
Emotion adjectives denote internal states. How do children learn their meanings?

- Which sentence-level cues help to restrict the set of likely/possible meanings?
- Which environmental cues (facial expressions, situations) help to refine the lexical meaning?
- How do the sentence-level and environmental cues interact?
Prior work suggests an influence of language on the formation of access to emotion concepts.
Prior work suggests an influence of language on the formation of/access to emotion concepts

...language plays a role in emotion because it helps acquire, organize, and use the concept knowledge that is an essential element in emotion perceptions ... and perhaps even experiences.

Lindquist et al. 2015, p.100
Emotion Concepts and Language

Prior work suggests an influence of language on the formation of/access to emotion concepts

...language plays a role in emotion because it helps acquire, organize, and use the concept knowledge that is an essential element in emotion perceptions ... and perhaps even experiences.

Lindquist et al. 2015, p.100

...emotion words help a perceiver understand the meaning of another person’s facial muscle movements. [...] Language plays a constitutive role in emotion perception...

Lindquist & Gendron 2013, p.66
adults are better at a face sorting task when they are provided with an array of verbal labels, than when no labels are provided (Gendron et al. 2014)
adults are better at a face sorting task when they are provided with an array of verbal labels, than when no labels are provided (Gendron et al. 2014)

semantic satiation of emotion words impedes performance in face matching task (Lindquist et al. 2006, Gendron et al. 2012)
adults are better at a face sorting task when they are provided with an array of verbal labels, than when no labels are provided (Gendron et al. 2014)

semantic satiation of emotion words impedes performance in face matching task (Lindquist et al. 2006, Gendron et al. 2012)

semantic dementia: adults with selective impairment to emotion vocabulary sort emotion expressions into fewer categories than unaffected adults (Lindquist et al. 2014)
adults are better at a face sorting task when they are provided with an array of verbal labels, than when no labels are provided (Gendron et al. 2014)

semantic satiation of emotion words impedes performance in face matching task (Lindquist et al. 2006, Gendron et al. 2012)

semantic dementia: adults with selective impairment to emotion vocabulary sort emotion expressions into fewer categories than unaffected adults (Lindquist et al. 2014)

children get better at face sorting tasks around the time they are acquiring emotion words (Widen 2013)
adults are better at a face sorting task when they are provided with an array of verbal labels, than when no labels are provided (Gendron et al. 2014)

semantic satiation of emotion words impedes performance in face matching task (Lindquist et al. 2006, Gendron et al. 2012)

semantic dementia: adults with selective impairment to emotion vocabulary sort emotion expressions into fewer categories than unaffected adults (Lindquist et al. 2014)

children get better at face sorting tasks around the time they are acquiring emotion words (Widen 2013)

If learning a word for an emotion facilitates the concept of the emotion, how is the word learned in the first place?
Sentence-level Cues for Emotion Adjectives

<table>
<thead>
<tr>
<th>Frame</th>
<th>Possible Meanings</th>
</tr>
</thead>
<tbody>
<tr>
<td>John is daxy</td>
<td>red, tall, hungry, cold, happy, sad</td>
</tr>
</tbody>
</table>
Sentence-level Cues for Emotion Adjectives

<table>
<thead>
<tr>
<th>Frame</th>
<th>Possible Meanings</th>
</tr>
</thead>
<tbody>
<tr>
<td>John is daxy</td>
<td>red, tall, hungry, cold, happy, sad</td>
</tr>
<tr>
<td>John feels daxy</td>
<td>#red, #tall, hungry, cold, happy, sad</td>
</tr>
</tbody>
</table>
Sentence-level Cues for Emotion Adjectives

<table>
<thead>
<tr>
<th>Frame</th>
<th>Possible Meanings</th>
</tr>
</thead>
<tbody>
<tr>
<td>John is daxy</td>
<td>red, tall, hungry, cold, happy, sad</td>
</tr>
<tr>
<td>John feels daxy</td>
<td>#red, #tall, hungry, cold, happy, sad</td>
</tr>
<tr>
<td>John feels daxy about something</td>
<td>#red, #tall, #hungry, #cold, happy, sad</td>
</tr>
<tr>
<td>Frame</td>
<td>Possible Meanings</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td>John is daxy</td>
<td>red, tall, hungry, cold, happy, sad</td>
</tr>
<tr>
<td>John feels daxy</td>
<td>#red, #tall, hungry, cold, happy, sad</td>
</tr>
<tr>
<td>John feels daxy about something</td>
<td>#red, #tall, #hungry, #cold, happy, sad</td>
</tr>
<tr>
<td>John feels daxy to do something</td>
<td>#red, #tall, #hungry, #cold, happy, sad</td>
</tr>
</tbody>
</table>
Sentence-level Cues for Emotion Adjectives

<table>
<thead>
<tr>
<th>Frame</th>
<th>Possible Meanings</th>
</tr>
</thead>
<tbody>
<tr>
<td>John is daxy</td>
<td>red, tall, hungry, cold, happy, sad</td>
</tr>
<tr>
<td>John feels daxy</td>
<td>#red, #tall, hungry, cold, happy, sad</td>
</tr>
<tr>
<td>John feels daxy about something</td>
<td>#red, #tall, #hungry, #cold, happy, sad</td>
</tr>
<tr>
<td>John feels daxy to do something</td>
<td>#red, #tall, #hungry, #cold, happy, sad</td>
</tr>
</tbody>
</table>

tall, red
physical/external properties
Sentence-level Cues for Emotion Adjectives

<table>
<thead>
<tr>
<th>Frame</th>
<th>Possible Meanings</th>
</tr>
</thead>
<tbody>
<tr>
<td>John is daxy</td>
<td>red, tall, hungry, cold, happy, sad</td>
</tr>
<tr>
<td>John feels daxy</td>
<td>#red, #tall, hungry, cold, happy, sad</td>
</tr>
<tr>
<td>John feels daxy about something</td>
<td>#red, #tall, #hungry, #cold, happy, sad</td>
</tr>
<tr>
<td>John feels daxy to do something</td>
<td>#red, #tall, #hungry, #cold, happy, sad</td>
</tr>
</tbody>
</table>

- tall, red physical/external properties
- hungry, cold internal physical (non-emotion) properties
Sentence-level Cues for Emotion Adjectives

<table>
<thead>
<tr>
<th>Frame</th>
<th>Possible Meanings</th>
</tr>
</thead>
<tbody>
<tr>
<td>John is daxy</td>
<td>red, tall, hungry, cold, happy, sad</td>
</tr>
<tr>
<td>John feels daxy</td>
<td>#red, #tall, hungry, cold, happy, sad</td>
</tr>
<tr>
<td>John feels daxy about something</td>
<td>#red, #tall, #hungry, #cold, happy, sad</td>
</tr>
<tr>
<td>John feels daxy to do something</td>
<td>#red, #tall, #hungry, #cold, happy, sad</td>
</tr>
</tbody>
</table>

- tall, red: physical/external properties
- hungry, cold: internal physical (non-emotion) properties
- happy, sad: internal, mental/emotion properties
Widen and Russell (2010) presented children (4–10 years) with stories/faces and asked children to label how the character felt.
Widen and Russell (2010) presented children (4–10 years) with stories/faces and asked children to label how the character felt.

One day, it was Joan’s birthday. All her friends came to her birthday party and gave her presents. Joan jumped up and down and clapped her hands. How does Joan feel?
Widen and Russell (2010) presented children (4–10 years) with stories/faces and asked children to label how the character felt.

One day, it was Joan’s birthday. All her friends came to her birthday party and gave her presents. Joan jumped up and down and clapped her hands. How does Joan feel?

Or:

Here’s a picture of Joan. How does Joan feel?
They found...

- Main effect of age between 3 groups (preschool, K–1, 2–3)
They found...

- Main effect of age between 3 groups (preschool, K–1, 2–3)
- Everyone was 100% correct on happy
They found...

- Main effect of age between 3 groups (preschool, K–1, 2–3)
- Everyone was 100% correct on happy
- Main effect of presentation mode: kids were better with stories than pictures (except for surprise)
They found...

- Main effect of age between 3 groups (preschool, K–1, 2–3)
- Everyone was 100% correct on happy
- Main effect of presentation mode: kids were better with stories than pictures (except for surprise)
- Significant interaction between age and presentation mode: children improved earlier in story mode than face mode.
We taught children (age 3–5) novel adjectives in two studies (Becker, Lindquist & Shablack, in prep.).
Teaching Novel Emotion Adjectives

We taught children (age 3–5) novel adjectives in two studies (Becker, Lindquist & Shablack, in prep.).

Study 1 (“Language-Only”): Sentence-level cues but no environmental cues
Teaching Novel Emotion Adjectives

We taught children (age 3–5) novel adjectives in two studies (Becker, Lindquist & Shablack, in prep.).

Study 1 (“Language-Only”): Sentence-level cues but no environmental cues

- Children heard a novel adjective used 4 times in one of three sentence frames
 - Puppet A: I know an alien who is daxy!
 - Puppet B: Really? You know an alien who is daxy?
 - Puppet A: Yeah! This alien is daxy.
 - Puppet B: Wow! You know an alien who is daxy.
Teaching Novel Emotion Adjectives

We taught children (age 3–5) novel adjectives in two studies (Becker, Lindquist & Shablack, in prep.).

Study 1 ("Language-Only"): Sentence-level cues but no environmental cues

- Children heard a novel adjective used 4 times in one of three sentence frames
 - Puppet A: I know an alien who is daxy!
 - Puppet B: Really? You know an alien who is daxy?
 - Puppet A: Yeah! This alien is daxy.
 - Puppet B: Wow! You know an alien who is daxy.
- I know an alien who **is daxy**
 - feels daxy
 - feels daxy about something
Teaching Novel Emotion Adjectives

Study 2 ("Language + Context"): Environmental cues and (some) sentence-level cues

- Children heard a short story (w/ video) about a character who experiences some emotion.
Study 2 ("Language + Context"): Environmental cues and (some) sentence-level cues

- Children heard a short story (w/ video) about a character who experiences some emotion.
- “It was Wazu’s birthday. All his friends came to his birthday party and gave him presents. Wazu jumped up and down.”
Teaching Novel Emotion Adjectives

Study 2 ("Language + Context"): Environmental cues and (some) sentence-level cues

- Children heard a short story (w/ video) about a character who experiences some emotion.
- “It was Wazu’s birthday. All his friends came to his birthday party and gave him presents. Wazu jumped up and down.”
- “Now, Wazu is daxy. What do you think daxy means? Point to where Wazu is daxy!”
Teaching Novel Emotion Adjectives

Study 2 (“Language + Context”): Environmental cues and (some) sentence-level cues

- Children heard a short story (w/ video) about a character who experiences some emotion.
- “It was Wazu’s birthday. All his friends came to his birthday party and gave him presents. Wazu jumped up and down.”
- “Now, Wazu is daxy. What do you think daxy means? Point to where Wazu is daxy!”
- Point to where Wazu is daxy
 feels daxy
 feels daxy about something
Both studies: children were asked to “point to where NP is daxy/feels daxy/feels daxy about something”
Both studies: children were asked to “point to where NP is daxy/feels daxy/feels daxy about something”
Point to where Palooza feels blinty.
Predictions

- If sentence-level cues (feels daxy (about)) \rightarrow emotion word, children in the Language-Only study should choose the emotion picture in the feels and feels-about conditions, but not in the is condition.

And should choose state picture in feels condition but not feels about condition.

- If environmental cues \rightarrow emotion word, children in the Language+Context study should choose the emotion picture in all conditions.

- If both types of cues have an additive effect, children in the Language+Context study should choose the emotion picture more in feels and feels-about than in is condition.

$\text{feels-about} \geq \text{feels} > \text{is}$
Predictions

- If sentence-level cues (*feels daxy (about)*) → emotion word, children in the Language-Only study should choose the emotion picture in the *feels* and *feels-about* conditions, but not in the *is* condition. And should choose *state* picture in *feels* condition but not *feels about* condition.
Predictions

- If sentence-level cues (\textit{feels daxy (about)}) \rightarrow emotion word, children in the Language-Only study should choose the \textit{emotion} picture in the \textit{feels} and \textit{feels-about} conditions, but not in the \textit{is} condition. And should choose \textit{state} picture in \textit{feels} condition but not \textit{feels about} condition.

- If environmental cues \rightarrow emotion word, children in the Language+Context study should choose the \textit{emotion} picture in all conditions. If both types of cues have an additive effect, children in the Language+Context study should choose the emotion picture more in \textit{feels} and \textit{feels-about} than in \textit{is} condition.
Predictions

- If sentence-level cues (feels daxy (about)) → emotion word, children in the Language-Only study should choose the emotion picture in the feels and feels-about conditions, but not in the is condition. And should choose state picture in feels condition but not feels about condition.

- If environmental cues → emotion word, children in the Language+Context study should choose the emotion picture in all conditions.

- If both types of cues have an additive effect, children in the Language+Context study should choose the emotion picture more in feels and feels-about than in is condition.
Predictions

- If sentence-level cues (feels daxy (about)) → emotion word, children in the Language-Only study should choose the emotion picture in the feels and feels-about conditions, but not in the is condition. And should choose state picture in feels condition but not feels about condition.
- If environmental cues → emotion word, children in the Language+Context study should choose the emotion picture in all conditions.
- If both types of cues have an additive effect, children in the Language+Context study should choose the emotion picture more in feels and feels-about than in is condition.

feels-about ≥ feels > is
Results: Language-Only

N=129, 64F, mean age = 3.9

2-way (choice x age) $F = 2.99$, $p = 0.020$; 3-way int. (choice x cond. x age) $F = 1.76$, $p = 0.086$
Results: Language-Only

- **Is** condition
 - 3- and 4-year-olds don’t differentiate
 - 5-year-olds **avoid** picking action (running; *is daxy*, not *is daxing*)

- **Feels** condition
 - 3-year-olds don’t differentiate
 - 4- and 5-year-olds prefer **state** pictures (itchy)

- **Feels About** condition
 - 3- and 4-year-olds pick **state** pictures
 - 5-year-olds pick **emotion** pictures (happy)
Results: Language + Context

N=123, 50F, mean age = 4.0

2-way (choice x age) F = 10.19, p = 0.001; 3-way int. (choice x cond. x age) F = 2.85, p = 0.005
Results: Language + Context

- **Is** condition
 - 3- and 4-year-olds don’t differentiate
 - 5-year-olds pick emotion pictures

- **Feels** condition
 - 3-year-olds avoid picking action
 - 4- and 5-year-olds pick emotion (and state) pictures

- **Feels About** condition
 - 3-year-olds don’t differentiate
 - 4- and 5-year-olds pick emotion pictures sig. more than state
With no environmental cues ("language-only")
- 3-year-olds don’t distinguish adjective meanings
- 4- and 5-year-olds tend to prefer state pictures
- 5-year-olds pick emotion pictures only in the Feels About condition
Discussion

- With no environmental cues ("language-only")
 - 3-year-olds don’t distinguish adjective meanings
 - 4- and 5-year-olds tend to prefer state pictures
 - 5-year-olds pick emotion pictures only in the Feels About condition

- With environmental cues ("language + context")
 - 3-year-olds are still unable to distinguish adjective meanings
 - 4-year-olds pick emotion pictures w/ feels and feels about
 - 5-year-olds pick emotion pictures in all conditions
Some Concerns

- In the language-only study there was a general preference for the *state* pictures, including in fillers (which used novel verbs)
In the language-only study there was a general preference for the state pictures, including in fillers (which used novel verbs).

People can have emotions while experiencing physical states or acting.
Some Concerns

- In the language-only study there was a general preference for the *state* pictures, including in fillers (which used novel verbs)
- People can have emotions *while* experiencing physical states or acting
- Alien cartoons were used to avoid Mutual Exclusivity effects, but
Some Concerns

- In the language-only study there was a general preference for the state pictures, including in fillers (which used novel verbs).
- People can have emotions while experiencing physical states or acting.
- Alien cartoons were used to avoid Mutual Exclusivity effects, but
 (a) we used analogues of human emotions, and
In the language-only study there was a general preference for the state pictures, including in fillers (which used novel verbs). People can have emotions while experiencing physical states or acting. Alien cartoons were used to avoid Mutual Exclusivity effects, but

(a) we used analogues of human emotions, and

(b) not clear if drawings depict what we wanted.
Summary: Tough- and Control Adjectives

- For learning predicates with abstract, not-directly-observable meanings, sentence-level cues provide important restrictive information.
For learning predicates with abstract, not-directly-observable meanings, sentence-level cues provide important restrictive information.

Learners can use sentence-level cues like subject (in)animacy to draw inferences about the subcategories of novel adjectives that take infinitive complements.
Summary: Tough- and Control Adjectives

- For learning predicates with abstract, not-directly-observable meanings, sentence-level cues provide important restrictive information.
- Learners can use sentence-level cues like subject (in)animacy to draw inferences about the subcategories of novel adjectives that take infinitive complements.
- But learners also use environmental cues for these predicates, even though the predicate doesn’t denote anything concrete or observable in the environment.
Summary: Tough- and Control Adjectives

- For learning predicates with abstract, not-directly-observable meanings, sentence-level cues provide important restrictive information.
- Learners can use sentence-level cues like subject (in)animacy to draw inferences about the subcategories of novel adjectives that take infinitive complements.
- But learners also use environmental cues for these predicates, even though the predicate doesn’t denote anything concrete or observable in the environment.
 - Agency
 - Intentions
 - Repercussions and outcomes of actions
Summary: Emotion Adjectives

Previous work (Widen & Russell)

- Story cues provide more information than face cues → stories provide information about agency, intentions, repercussions and outcomes of actions
Summary: Emotion Adjectives

Previous work (Widen & Russell)

- Story cues provide more information than face cues → stories provide information about agency, intentions, repercussions and outcomes of actions

Our study

- Without environmental (story) cues, only 5-year-olds drew expected inferences:
 - `is daxy` → state or emotion, *action
 - `feels daxy` → state or emotion, *action
 - `feels daxy about s.th.` → emotion, *state or *action
Summary: Emotion Adjectives

Previous work (Widen & Russell)

- Story cues provide more information than face cues → stories provide information about agency, intentions, repercussions and outcomes of actions

Our study

- Without environmental (story) cues, only 5-year-olds drew expected inferences:
 - is daxy → state or emotion, *action
 - feels daxy → state or emotion, *action
 - feels daxy about s.th. → emotion, *state or *action

- With environmental cues, 5-year-olds chose emotions, 4-year-olds did so with feels and feels about.
Future Directions

Where do we go from here?
Future Directions

Where do we go from here?

- Redo with human faces, not alien cartoons
Future Directions

Where do we go from here?

- Redo with human faces, not alien cartoons
- Increase range of sentence frames? (NP feels daxy about something, NP feels daxy to do something...)

Languages differ in the exact emotions labeled. Are bilingual children better/worse at face labeling/sorting tasks?
Future Directions

Where do we go from here?

- Redo with human faces, not alien cartoons
- Increase range of sentence frames? (NP feels daxy about something, NP feels daxy to do something...)
- Increase number of exposures to novel adjectives?
Future Directions

Where do we go from here?

- Redo with human faces, not alien cartoons
- Increase range of sentence frames? (NP feels daxy about something, NP feels daxy to do something...)
- Increase number of exposures to novel adjectives?
- Bilingualism
Future Directions

Where do we go from here?

- Redo with human faces, not alien cartoons
- Increase range of sentence frames? (NP feels daxy about something, NP feels daxy to do something...)
- Increase number of exposures to novel adjectives?
- Bilingualism
 - Languages differ in the exact emotions labeled
Future Directions

Where do we go from here?

- Redo with human faces, not alien cartoons
- Increase range of sentence frames? (NP feels daxy about something, NP feels daxy to do something...)
- Increase number of exposures to novel adjectives?
- Bilingualism
 - Languages differ in the exact emotions labeled
 - Are bilingual children better/worse at face labeling/sorting tasks?
Where do we go from here?

- Redo with human faces, not alien cartoons
- Increase range of sentence frames? (NP feels daxy about something, NP feels daxy to do something...)
- Increase number of exposures to novel adjectives?
- Bilingualism
 - Languages differ in the exact emotions labeled
 - Are bilingual children better/worse at face labeling/sorting tasks?
- Autism
Thank you!
Acknowledgments

Collaborators...

<table>
<thead>
<tr>
<th>Tough-Adjectives</th>
<th>Emotion Adjectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruno Estigarribia</td>
<td>Kristen Lindquist</td>
</tr>
<tr>
<td>Duna Gylfadóttir</td>
<td>Holly Shablack</td>
</tr>
</tbody>
</table>

And other supporters...

- UNC’s Fostering Interdisciplinary Research Explorations (FIRE) grant
- Museum of Life and Science (Durham, NC)
- National Living Labs (funded by NSF)
- RAs: Laura Belk, Thomas Bulick, Will Carter, Nolan Danley, Iyad Ghanim, Xue He, Anika Khan, Emily Moeng, Jordan Jarrett, Sarah Smith, Shannon Watkins
In addition to children, we tested 72 adults (29F, mean age = 36.6) on the emotion stimuli.
In addition to children, we tested 72 adults (29F, mean age = 36.6) on the emotion stimuli.
Novel Raising/Control Verbs

- Small pilot with 5 5-year-olds
Novel Raising/Control Verbs

- Small pilot with 5 5-year-olds
- Verbs with infinitive complements, animate or inanimate subjects
Novel Raising/Control Verbs

- Small pilot with 5 5-year-olds
- Verbs with infinitive complements, animate or inanimate subjects

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>The vegetables meb to be tasty</td>
<td>inanimate</td>
</tr>
<tr>
<td>My dog zids to be at the park</td>
<td>animate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test</th>
<th>Expected Grammaticality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Did there meb to be a banana in the soup?</td>
<td>grammatical</td>
</tr>
<tr>
<td>Did the turtle meb the soup?</td>
<td>ungrammatical</td>
</tr>
<tr>
<td>Did there zid to be a dog with the policeman?</td>
<td>ungrammatical</td>
</tr>
<tr>
<td>Did the dog zid his toy?</td>
<td>grammatical</td>
</tr>
<tr>
<td>Exposure subject</td>
<td>Exp grammaticality</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>inanimate</td>
<td>grammatical</td>
</tr>
<tr>
<td>inanimate</td>
<td>ungrammatical</td>
</tr>
<tr>
<td>animate</td>
<td>grammatical</td>
</tr>
<tr>
<td>animate</td>
<td>ungrammatical</td>
</tr>
</tbody>
</table>