Palooza Feels Binty about Something!
Studying How Children Acquire Emotion Adjectives

Misha Becker
mbecker@email.unc.edu

University of North Carolina

March 13, 2018
Acknowledgments

Collaborators: Kristen Lindquist and Holly Shablack (UNC Psychology, Carolina Affective Science Lab)

Research Assistants:
 Iyad Ghanim Emily Moeng
 Nolan Danley Anika Khan
 Laura Belk Jordan Jarrett
 Kobe Spells Victoria Brown

Funding: UNC’s FIRE grant (Fostering Interdisciplinary Research Explorations)

Other Support: Museum of Life and Science (Durham, NC)
Outline

- Background: How are emotion concepts acquired?
Outline

- Background: How are emotion concepts acquired?
 - Evidence of a role for language
Outline

- Background: How are emotion concepts acquired?
 - Evidence of a role for language
 - But if words contribute to the formation of the concepts, how are the words acquired?
Learning Emotion Words and Concepts

Outline

- Background: How are emotion concepts acquired?
 - Evidence of a role for language
 - But if words contribute to the formation of the concepts, how are the words acquired?

- Support from language: Syntactic Bootstrapping
Learning Emotion Words and Concepts

Outline

- Background: How are emotion concepts acquired?
 - Evidence of a role for language
 - But if words contribute to the formation of the concepts, how are the words acquired?
- Support from language: Syntactic Bootstrapping
- Two experiments using novel adjectives
Outline

- Background: How are emotion concepts acquired?
 - Evidence of a role for language
 - But if words contribute to the formation of the concepts, how are the words acquired?
- Support from language: Syntactic Bootstrapping
- Two experiments using novel adjectives
- A corpus study: how are emotion adjectives used in Child-Directed Speech?
Learning Emotion Words and Concepts

Outline

- Background: How are emotion concepts acquired?
 - Evidence of a role for language
 - But if words contribute to the formation of the concepts, how are the words acquired?
- Support from language: Syntactic Bootstrapping
- Two experiments using novel adjectives
- A corpus study: how are emotion adjectives used in Child-Directed Speech?
- Preliminary conclusions and further directions
What are emotions?
What are emotions?

Emotions are internal psychological affective states that we experience in ourselves and recognize in others often via facial expressions.
What are emotions?

Emotions are internal psychological affective states that we experience in ourselves and recognize in others often via facial expressions.

Where do emotion concepts come from? Two approaches...
What are emotions?

Emotions are internal psychological affective states that we experience in ourselves and recognize in others often via facial expressions.

Where do emotion concepts come from? Two approaches...

- “basic emotions” approach:
 certain emotion concepts are innate
What are emotions?

Emotions are internal psychological affective states that we experience in ourselves and recognize in others often via facial expressions.

Where do emotion concepts come from? Two approaches...

- **“basic emotions” approach:**
 certain emotion concepts are innate

- **constructionist approach:**
 emotion concepts are constructed based on our experiences
“Basic Emotions” Approach

- Humans are born with five “basic” emotions:
 - happiness
 - sadness
 - anger
 - fear
 - disgust
“Basic Emotions” Approach

- Humans are born with five “basic” emotions:
 - happiness
 - sadness
 - anger
 - fear
 - disgust
These emotions “should be universally accepted as discriminable categories of direct experience.” (J-L & O, p.90)
These emotions “should be universally accepted as discriminable categories of direct experience.” (J-L & O, p.90)

- they cannot be further broken down
“Basic Emotions” Approach

These emotions “should be universally accepted as discriminable categories of direct experience.” (J-L & O, p.90)

- they cannot be further broken down
- the same emotional expressions will be produced by the same neuromuscular movements
“Basic Emotions” Approach

These emotions “should be universally accepted as discriminable categories of direct experience.” (J-L & O, p.90)

- they cannot be further broken down
- the same emotional expressions will be produced by the same neuromuscular movements
- people will recognize basic emotions on facial expressions quickly (Tracy & Robins 2008)
These emotions “should be universally accepted as discriminable categories of direct experience.” (J-L & O, p.90)

- they cannot be further broken down
- the same emotional expressions will be produced by the same neuromuscular movements
- people will recognize basic emotions on facial expressions quickly (Tracy & Robins 2008)
- they will be (essentially) the same for all people, across cultures and languages (Ekman et al. 1987)
Lindquist & Gendron (2013), i.a. identify problems with the “basic emotions” approach:
Lindquist & Gendron (2013), i.a. identify problems with the “basic emotions” approach:

- Cross-linguistic/cultural differences in how people perceive emotions (Gendron et al. 2014)
Lindquist & Gendron (2013), i.a. identify problems with the “basic emotions” approach:

- Cross-linguistic/cultural differences in how people perceive emotions (Gendron et al. 2014)
- Measurements of facial expressions via facial electromyography do not reliably predict emotional states (e.g. anger vs. sadness)
Lindquist & Gendron (2013), i.a. identify problems with the “basic emotions” approach:

- Cross-linguistic/cultural differences in how people perceive emotions (Gendron et al. 2014)
- Measurements of facial expressions via facial electromyography do not reliably predict emotional states (e.g. anger vs. sadness)
- People do not always produce facial expressions corresponding to reported internal states
SURPRISED
EXCITED
Instead, people’s facial expressions correspond more broadly to even more basic, underlying features: valence (pleasant vs. unpleasant) and arousal (active vs. calm).
Instead, people’s facial expressions correspond more broadly to even more basic, underlying features: valence (pleasant vs. unpleasant) and arousal (active vs. calm).
How do we acquire concepts of more fine-grained, discrete emotions if the visual cues for emotion perception are aligned only with these more basic features (pleasure/displeasure, arousal)?
Constructionist approach

...emotion words help a perceiver understand the meaning of another person’s facial muscle movements. [...] Language plays a constitutive role in emotion perception...

Lindquist & Gendron (2013), p.66
Constructionist approach

...emotion words help a perceiver understand the meaning of another person’s facial muscle movements. [...] Language plays a constitutive role in emotion perception...

Lindquist & Gendron (2013), p.66

...language plays a role in emotion because it helps acquire, organize, and use the concept knowledge that is an essential element in emotion perceptions ... and perhaps even experiences.

Lindquist et al. 2015, p.100
Constructionist approach

Evidence for the “constructionist” view:

- Neurotypical adults
Evidence for the “constructionist” view:

- Neurotypical adults
 - Better performance in face sorting task when verbal labels are provided, than when no labels are provided

- Semantic dementia
 - Task: sort pictures of 6 emotion categories (happy, sad, afraid, etc.).
 - Control group formed roughly 6 piles, but patients formed only 3 or 4 piles, distinguished by valence (e.g. pleasant, unpleasant, neutral)
Evidence for the “constructionist” view:

- Neurotypical adults
 - Better performance in face sorting task when verbal labels are provided, than when no labels are provided
 - “semantic satiation” impairs ability to judge whether two faces exhibit the same emotion or not
Constructionist approach

Evidence for the “constructionist” view:

- **Neurotypical adults**
 - Better performance in face sorting task when verbal labels are provided, than when no labels are provided
 - “semantic satiation” impairs ability to judge whether two faces exhibit the same emotion or not
 - Evidence from brain imaging: when neutral face is labeled as “fearful,” areas in visual cortex are activated that are normally activated when viewing a fearful face.
Constructionist approach

Evidence for the “constructionist” view:

- **Neurotypical adults**
 - Better performance in face sorting task when verbal labels are provided, than when no labels are provided
 - “semantic satiation” impairs ability to judge whether two faces exhibit the same emotion or not
 - Evidence from brain imaging: when neutral face is labeled as “fearful,” areas in visual cortex are activated that are normally activated when viewing a fearful face.

- **Semantic dementia**
Evidence for the “constructionist” view:

- **Neurotypical adults**
 - Better performance in face sorting task when verbal labels are provided, than when no labels are provided
 - “semantic satiation” impairs ability to judge whether two faces exhibit the same emotion or not
 - Evidence from brain imaging: when neutral face is labeled as “fearful,” areas in visual cortex are activated that are normally activated when viewing a fearful face.

- **Semantic dementia**
 - task: sort pictures of 6 emotion categories (happy, sad, afraid, etc.). Control group formed roughly 6 piles, but patients formed only 3 or 4 piles, distinguished by valence (e.g. pleasant, unpleasant, neutral)
Further evidence from development:

- children get better at face sorting tasks around the time they are acquiring emotion words (Widen 2013)
Constructionist approach

Further evidence from development:

- children get better at face sorting tasks around the time they are acquiring emotion words (Widen 2013)
 - prelinguistic babies to two-year-olds reliably distinguish faces only based on valence (sort all unpleasant faces together, all happy faces together)
 - 3- and 4-year-olds begin to acquire 'sad' and 'fearful' and separate those faces from 'angry' in sort tasks
 - 7-year-olds show adult-like categorization (except 'disgust')

This is taken to support the view that emotion language helps construct specific emotion concepts.
Further evidence from development:

- Children get better at face sorting tasks around the time they are acquiring emotion words (Widen 2013)
 - Prelinguistic babies to two-year-olds reliably distinguish faces only based on valence (sort all unpleasant faces together, all happy faces together)
 - 3- and 4-year-olds begin to acquire ‘sad’ and ‘fearful’ and separate those faces from ‘angry’ in sort tasks

This is taken to support the view that emotion language helps construct specific emotion concepts.
Further evidence from development:

- children get better at face sorting tasks around the time they are acquiring emotion words (Widen 2013)
 - prelinguistic babies to two-year-olds reliably distinguish faces only based on valence (sort all unpleasant faces together, all happy faces together)
 - 3- and 4-year-olds begin to acquire ‘sad’ and ‘fearful’ and separate those faces from ‘angry’ in sort tasks
 - 7-year-olds show adult-like categorization (except ‘disgust’)
Children get better at face sorting tasks around the time they are acquiring emotion words (Widen 2013). Prelinguistic babies to two-year-olds reliably distinguish faces only based on valence (sort all unpleasant faces together, all happy faces together). 3- and 4-year-olds begin to acquire ‘sad’ and ‘fearful’ and separate those faces from ‘angry’ in sort tasks. 7-year-olds show adult-like categorization (except ‘disgust’). This is taken to support the view that emotion language helps construct specific emotion concepts.
So where does the language come from?

A common assumption is that children hear words and (magically!) map them onto some salient thing in their environment → Word-to-world mapping. This might work for (some) concrete nouns, but not so much for verbs, and arguably not for abstract words.
A common assumption is that children hear words and (magically!) map them onto some salient thing in their environment.
A common assumption is that children hear words and (magically!) map them onto some salient thing in their environment

→ Word-to-world mapping
A common assumption is that children hear words and (magically!) map them onto some salient thing in their environment.

→ Word-to-world mapping

This might work for (some) concrete nouns, but not so much for verbs, and arguably not for abstract words.
So where does the language come from?

A common assumption is that children hear words and (magically!) map them onto some salient thing in their environment

→ Word-to-world mapping

This might work for (some) concrete nouns, but not so much for verbs, and arguably not for abstract words.
A common assumption is that children hear words and (magically!) map them onto some salient thing in their environment

→ Word-to-world mapping

This might work for (some) concrete nouns, but not so much for verbs, and arguably not for abstract words.
So where does the language come from?

A common assumption is that children hear words and (magically!) map them onto some salient thing in their environment

→ Word-to-world mapping

This might work for (some) concrete nouns, but not so much for verbs, and arguably not for abstract words.
Gleitman (1990) observed that events and states (＝predicates) are not reliably labeled in the input.
Gleitman (1990) observed that events and states (=predicates) are not reliably labeled in the input.

Her proposal: learners use the syntactic frame in which a verb occurs to infer its (probable, likely) semantic properties.
Gleitman (1990) observed that events and states (＝predicates) are not reliably labeled in the input.

Her proposal: learners use the syntactic frame in which a verb occurs to infer its (probable, likely) semantic properties.

\[
\begin{align*}
\text{[Subject [Verb]]} & \quad \text{sleep, *hit, *give, ?think} \\
\text{[Subject [Verb [Object]]]} & \quad *\text{sleep, hit, *give, *think} \\
\text{[Subject [[Verb [Object]] Indirect Object]]} & \quad *\text{sleep, *hit, give, *think} \\
\text{[Subject [Verb [Sentence]]]} & \quad *\text{sleep, *hit, *give, think}
\end{align*}
\]
Gleitman (1990) observed that events and states (=predicates) are **not** reliably labeled in the input.

Her proposal: learners use the syntactic frame in which a verb occurs to infer its (probable, likely) semantic properties.

\[\text{[Subject [Verb]]} \quad \text{sleep, *hit, *give, ?think} \]
\[\text{[Subject [Verb [Object]]]} \quad *\text{sleep, hit, *give, *think} \]
\[\text{[Subject [[Verb [Object]] Indirect Object]]} \quad *\text{sleep, *hit, give, *think} \]
\[\text{[Subject [Verb [Sentence]]]} \quad *\text{sleep, *hit, *give, think} \]

→ Sentence-to-world mapping

Two characters simultaneously engage in a causative and a non-causative event (e.g. forcing-s.o.-to-squat and arm-wheeling).

Two characters simultaneously engage in a causative and a non-causative event (e.g. forcing-s.o.-to-squat and arm-wheeling).

<table>
<thead>
<tr>
<th>Sentence</th>
<th>Likely Event</th>
<th>Unlikely Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>The duck is sebbing the frog!</td>
<td>forcing to squat</td>
<td>arm-wheeling</td>
</tr>
<tr>
<td>The duck and the frog are sebbing!</td>
<td>arm-wheeling</td>
<td>forcing to squat</td>
</tr>
</tbody>
</table>

Two characters simultaneously engage in a causative and a non-causative event (e.g. forcing-s.o.-to-squat and arm-wheeling).

<table>
<thead>
<tr>
<th>Sentence</th>
<th>Likely Event</th>
<th>Unlikely Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>The duck is sebbing the frog!</td>
<td>forcing to squat</td>
<td>arm-wheeling</td>
</tr>
<tr>
<td>The duck and the frog are sebbing!</td>
<td>arm-wheeling</td>
<td>forcing to squat</td>
</tr>
</tbody>
</table>

Children (ages 2-4) associate the intransitive verb with the non-causative event, and the transitive verb with the causative event.

Two characters simultaneously engage in a causative and a non-causative event (e.g. forcing-s.o.-to-squat and arm-wheeling).

<table>
<thead>
<tr>
<th>Sentence</th>
<th>Likely Event</th>
<th>Unlikely Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>The duck is sebbing the frog!</td>
<td>forcing to squat</td>
<td>arm-wheeling</td>
</tr>
<tr>
<td>The duck and the frog are sebbing!</td>
<td>arm-wheeling</td>
<td>forcing to squat</td>
</tr>
</tbody>
</table>

Children (ages 2-4) associate the intransitive verb with the non-causative event, and the transitive verb with the causative event.

...but what about adjectives? And, more generally, what about labels for internal states or abstract properties?
Prior research suggests that labels for internal/abstract states are more strongly cued by sentence frames than scene information.
Prior research suggests that labels for internal/abstract states are more strongly cued by sentence frames than scene information.

- Papafragou et al. (2005): adults and children are more likely to identify a “mystery verb” as a mental verb (e.g. think, believe) if their task involved translating a nonsense verb in Vamissa LODS that she ziptorks the silltap Matt GORPS that his grandmother is under the covers than after viewing a scene, even one that involved obvious false belief.
Nevertheless...

There is evidence that situational context provides some cues to the lexical meanings of mental/internal/abstract predicates.
Nevertheless...

There is evidence that situational context provides some cues to the lexical meanings of mental/internal/abstract predicates.

- In Papafragou et al’s study people guessed more mental verbs given scene+sentence than given sentence frame alone (adults: 44% scene only, 60% sentence only, 77% scene+sentence)
Nevertheless...

There is evidence that situational context provides some cues to the lexical meanings of mental/internal/abstract predicates.

- In Papafragou et al’s study people guessed more mental verbs given scene+sentence than given sentence frame alone (adults: 44% scene only, 60% sentence only, 77% scene+sentence)
- In Widen & Russell (2010) children ages 4–7 could identify how a character felt given a short story (“One day, it was Joan’s birthday. All her friends came to her birthday party and gave her presents. Joan jumped up and down and clapped her hands.”)—better than given faces only
Nevertheless…

There is evidence that situational context provides some cues to the lexical meanings of mental/internal/abstract predicates.

- In Papafragou et al’s study people guessed more mental verbs given scene+sentence than given sentence frame alone (adults: 44% scene only, 60% sentence only, 77% scene+sentence)

- In Widen & Russell (2010) children ages 4–7 could identify how a character felt given a short story (“One day, it was Joan’s birthday. All her friends came to her birthday party and gave her presents. Joan jumped up and down and clapped her hands.”)—better than given faces only

- In Becker (2014) children could infer that novel adjectives had properties of control adjectives (denote desires, emotions) vs. tough-adjectives given short video scenes.
Our Study: Comparing Contextual Cues and Syntactic Cues to Emotion Words

We are interested in the relative strength of cues from the situational context compared to sentence context, for inferring that a novel adjective denotes an emotion.
Our Study: Comparing Contextual Cues and Syntactic Cues to Emotion Words

We are interested in the relative strength of cues from the situational context compared to sentence context, for inferring that a novel adjective denotes an emotion.

We conducted two novel word studies:

1. presented a novel adjective in a **sentence context** that supports the meaning of an emotional state (rather than physical state or action)
Our Study: Comparing Contextual Cues and Syntactic Cues to Emotion Words

We are interested in the relative strength of cues from the situational context compared to sentence context, for inferring that a novel adjective denotes an emotion.

We conducted two novel word studies:

1. presented a novel adjective in a **sentence context** that supports the meaning of an emotional state (rather than physical state or action)

2. presented a novel adjective in a **story context** that makes an emotion particularly salient
Our Study: Comparing Contextual Cues and Syntactic Cues to Emotion Words

We are interested in the relative strength of cues from the situational context compared to sentence context, for inferring that a novel adjective denotes an emotion.

We conducted two novel word studies:

1. presented a novel adjective in a **sentence context** that supports the meaning of an emotional state (rather than physical state or action)

2. presented a novel adjective in a **story context** that makes an emotion particularly salient

In both studies children had to choose the picture of an alien that illustrated the meaning of the novel word
Study 1: Sentence Context

Three sentence frames (between subjects):

1. be + Adjective: Palooza is binty
2. feel + Adjective: Palooza feels binty
3. feel + Adjective + about: Palooza feels binty about something

be Adj happy, sad, tired, cold, tall, red
feel Adj happy, sad, tired, cold, *tall, *red
feel Adj about happy, sad, *tired, *cold, *tall, *red
Study 1: Sentence Context

Puppet A: I know an alien who is binty!
Puppet B: Really? You know an alien who is binty?
Puppet A: Yes! This alien is binty.
Puppet B: Wow! You know an alien who is binty!
Study 1: Sentence Context

Puppet A: I know an alien who is binty!
Puppet B: Really? You know an alien who is binty?
Puppet A: Yes! This alien is binty.
Puppet B: Wow! You know an alien who is binty!

...is binty/feels binty/feels binty about something
Study 1: Sentence Context

Participants: 120 children ages 3–5 years

Procedure:

- 3 warm-ups (inclusion criterion: 2/3 correct)
- 4 target videos
- 3 fillers ("I know an alien who is serding!")
- After each video conversation, point to 1 of 3 alien pictures
Point to where Palooza feels binty.
Moderate effect of sentence frame: kids pick emotion images more in “feels about” than “feels”, but not sig. more than in “is” condition.

Sig. effect of age: older kids pick more emotion images than action images

No 3-way interaction (Age x Sentence x Choice)
Study 1: Results (by Age)

- Moderate effect of sentence frame: kids pick emotion images more in “feels about” than “feels”, but not sig. more than in “is” condition.
- Sig. effect of age: older kids pick more emotion images than action images
- No 3-way interaction (Age x Sentence x Choice)
Children had an overall preference for the physical state images (more salient?)

Misha Becker
Acquisition of Emotion Adjectives
Study 1: Discussion

- Children had an overall preference for the physical state images (more salient?)

- Children were marginally influenced by sentence frame, but not exactly the way we expected.

Maybe children need more info from context for these kinds of words than for simple verbs?
Study 1: Discussion

- Children had an overall preference for the physical state images (more salient?)

- Children were marginally influenced by sentence frame, but not exactly the way we expected.

- Lack of 3-way interaction means that although older children picked more emotion images and children overall picked more emotion images for “feels about” than “feels”, the effect of sentence frame did not increase with age.
Study 1: Discussion

- Children had an overall preference for the physical state images (more salient?)

- Children were marginally influenced by sentence frame, but not exactly the way we expected.

- Lack of 3-way interaction means that although older children picked more emotion images and children overall picked more emotion images for “feels about” than “feels”, the effect of sentence frame did not increase with age.

- Maybe children need more info from context for these kinds of words than for simple verbs?
Based on Widen & Russell (2010): Children are presented with a series of very short stories about an alien character. Each story makes a particular emotion salient.
Based on Widen & Russell (2010): Children are presented with a series of very short stories about an alien character. Each story makes a particular emotion salient.

It was Palooza’s birthday. All her friends came to her birthday party and gave her presents. Palooza jumped up and down.
Based on Widen & Russell (2010): Children are presented with a series of very short stories about an alien character. Each story makes a particular emotion salient.

It was Palooza’s birthday. All her friends came to her birthday party and gave her presents. Palooza jumped up and down.

Now, Palooza is binty. What do you think binty means? Point to where Palooza is binty!
Point to where Palooza feels binty.
Participants: 113 children ages 3–5 years

Procedure:

- 3 warm-ups (inclusion criterion: 2/3 correct)
- 7 stories highlighting a positive or negative emotion for a character
- After each story children hear the novel adjective used in one of 3 sentence frames
 - Now Palooza is binty! What do you think binty means? Point to where Palooza is binty!
 - Now Palooza feels binty! . . .
 - Now Palooza feels binty about something! . . .
- Children point to one of 3 alien images
Study 2: Results
Significant effect of age
- Older kids pick more emotion images (5 > 4 and 4 > 3)
- 3-year-olds pick more action images than 4 or 5
- 4-year-olds pick marginally more physical state images than 5-year-olds
Study 2: Results

- Significant effect of age
 - older kids pick more emotion images (5>4 and 4>3)
 - 3-year-olds pick more action images than 4 or 5
 - 4-year-olds pick marginally more physical state images than 5-year-olds
- 3-way interaction between Age x Sentence Frame x Image choice
 - 4-year-olds were significantly influenced by sentence frame, picking the emotion image sig. more in “feels/feels about” than “is”, but about the same in “feels” and “feels about” conditions.
 - 5-year-olds were marginally influenced by sentence frame, picking the emotion image more in “is” and “feels about” than in “feels” condition.
Study 2: Discussion

- Story context appears to boost children’s mapping of the novel adjective onto an emotion.
- Older children (age 4, 5) are more susceptible to this influence than younger children (3).
- Sentence frame is additionally helpful for 4-year-olds: given the sentence frame “feels Adj.” or “feels Adj. about” they were more likely to pick the emotion picture.
- Contrary to expectation this did not happen for 5-year-olds: they picked emotion pictures equally given “is Adj.” or “feels Adj. about”.
3-year-olds are basically at chance in both studies, all conditions.
3-year-olds are basically at chance in both studies, all conditions.

Sentence frame alone ("feel Adj. about something") is only mildly helpful in cueing an emotion meaning.
Conclusion So Far

- 3-year-olds are basically at chance in both studies, all conditions.
- Sentence frame alone ("feel Adj. about something") is only mildly helpful in cueing an emotion meaning.
- Story context alone (story + "is" condition) cues emotion meaning for 5-year-olds.
Conclusion So Far

- 3-year-olds are basically at chance in both studies, all conditions.
- Sentence frame alone ("feel Adj. about something") is only mildly helpful in cueing an emotion meaning.
- Story context alone (story + "is" condition) cues emotion meaning for 5-year-olds.
- Story context + sentence frame cues emotion meaning for 4-year-olds.
How are emotion adjectives used in speech to children?
How are emotion adjectives used in speech to children?

Shablack (2017) examined spontaneous use of emotion adjectives by children and by parents speaking to children.

CHILDES database: 12 children ages 2–3 years
Positive Emotion Adjectives

<table>
<thead>
<tr>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>happy, happiness</td>
<td>afraid</td>
</tr>
<tr>
<td>glad</td>
<td>mad</td>
</tr>
<tr>
<td>excited</td>
<td>fear, fearful</td>
</tr>
<tr>
<td>calm</td>
<td>nervous</td>
</tr>
<tr>
<td>joy</td>
<td>gross</td>
</tr>
<tr>
<td>cheer, cheerful</td>
<td>gloomy</td>
</tr>
<tr>
<td>interested</td>
<td>upset</td>
</tr>
<tr>
<td>content</td>
<td>frustrated</td>
</tr>
<tr>
<td></td>
<td>jealous</td>
</tr>
</tbody>
</table>

Negative Emotion Adjectives

	angry, anger
	sad, sadness
	scared
	worry, worried
	disgust, disgusted, disgusting
	depressed
	annoyed
	furious
	unhappy
Use of Emotion Words

ADULT USE (%)

- All others: 11%
- Afraid: 8%
- Angry: 6%
- Scared: 14%
- Excited: 3%
- Glad: 9%
- Happy: 22%
- Sad: 13%
- Mad: 14%

CHILD USE (%)

- All others: 5%
- Afraid: 9%
- Angry: 6%
- Scared: 17%
- Excited: 2%
- Mad: 15%
- Happy: 34%
- Sad: 12%
Sentence Environments of Use

<table>
<thead>
<tr>
<th>Preceding Environment</th>
<th>Following Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>be</td>
<td>of</td>
</tr>
<tr>
<td>get</td>
<td>that</td>
</tr>
<tr>
<td>look</td>
<td>at</td>
</tr>
<tr>
<td>make</td>
<td>to</td>
</tr>
<tr>
<td>feel</td>
<td>about</td>
</tr>
<tr>
<td></td>
<td>because/since</td>
</tr>
<tr>
<td></td>
<td>when</td>
</tr>
</tbody>
</table>
Sentence Environments of Use

Preceding Sentence Environment

- **be**: 71.58% Adults, 53.04% Children
- **null be**: 0% Adults, 0% Children
- **get**: 27.31% Adults, 6.60% Children
- **look**: 9.13% Adults, 4.13% Children
- **make**: 1.63% Adults, 1.07% Children
- **feel**: 0.26% Adults, 0% Children

Following Sentence Environment

- **of**: 32.97% Adults, 19.11% Children
- **that**: 13.78% Adults, 13.37% Children
- **at**: 17.58% Adults, 18.87% Children
- **to**: 11.56% Adults, 6.59% Children
- **about**: 10.22% Adults, 2.20% Children
- **because/since**: 8.89% Adults, 8.39% Children
- **when**: 5.67% Adults, 6.67% Children
Preliminary analysis suggests there may be limited information for bootstrapping from the sentential environments in which emotion adjectives are used: *be* is the most common preceding environment.
Preliminary analysis suggests there may be limited information for bootstrapping from the sentential environments in which emotion adjectives are used: *be* is the most common preceding environment.

However, there may be cues from:

- make/get Adj. (also compatible with physical states)
- Adj. that/to/about
General Conclusion

There is a role for both language and situational context in learning the meanings of emotion words.

Lots of open questions! For example...
- If we increase the range of sentence frames used (make/get/feel Adj about/to/that...) does this help in a novel word learning task?
- What are the kinds of sentence frames that emotion words select in other languages?
- For children who have difficulties recognizing emotion in faces (e.g. children with autism), is language instruction helpful? Or does the problem recognizing emotions hinder learning emotion words?
There is a role for both language and situational context in learning the meanings of emotion words.

Lots of open questions! For example…
General Conclusion

There is a role for both language and situational context in learning the meanings of emotion words.

Lots of open questions! For example...

* If we increase the range of sentence frames used (make/get/feel Adj about/to/that...) does this help in a novel word learning task?
There is a role for both language and situational context in learning the meanings of emotion words.

Lots of open questions! For example...

- If we increase the range of sentence frames used (make/get/feel Adj about/to/that...) does this help in a novel word learning task?
- What are the kinds of sentence frames that emotion words select in other languages?
General Conclusion

There is a role for both language and situational context in learning the meanings of emotion words.

Lots of open questions! For example...

- If we increase the range of sentence frames used (make/get/feel Adj about/to/that...) does this help in a novel word learning task?
- What are the kinds of sentence frames that emotion words select in other languages?
- For children who have difficulties recognizing emotion in faces (e.g. children with autism), is language instruction helpful? Or does the problem recognizing emotions hinder learning emotion words?
THANK YOU!